珍惜与懂得
如何改变“只收藏不阅读”的习惯
美国副教授现身说法:
看到"只收藏,不阅读"的讨论,恍如回到7年前在台大备考托福时,天天上网找资料的那段日子。我花了大功夫在各大网站上寻找有关托福考试的文章和各种资源,包括词汇复习,阅读训练,作文模板,备考策略啦,等等,想的出来的问题我都去搜,都去整理。收藏这些资料,对我来说是很有成就感的,因为我天生喜欢把东西分门别类。桌上的茶几,必须放在茶杯垫下,而且要放到桌子的一个角落上,否则,被两三岁的我看了,心理就特别扭,手痒痒地要去弄整齐。学会上网之后,发现很多免费电子资源,别人放上来共享的,自然就逐渐迷上了收藏整理资料,这种感觉,应该和那些迷上赌博的人一样,整理出一个文档,就像把别人的钱照单收过来了。发展到后来,我买了25G的移动硬盘来备份这些影视和文本资料,不够用了,又换100G,看着沉甸甸的银盘,也顿觉自己是个皓首穷经的读书人。
说到这里,我是想说,花功夫去收藏或整理一些认为有价值的电子资源,本身并不是问题,不但让人产生成就感,还有很多实际用途。如果把这些资料分门别类,做好索引或者tag,自己用到或者和朋友分享的时候非常方便,几个鼠标点击就出来了。有人喜欢收藏励志类的故事啦,名人警句啦,这些可以时不时翻出来看看,既轻松又有所得。更重要的,做学生的经常要读文献,文献这东西说简单就简单,说难也难,万一哪个时段网路出了问题,或者学校的租用服务过期了,记性不好的人,想找回这些好文章就比较困难,在校外想要找文献,也不是简单差事。所以,我都是找到后马上略读摘要,感觉不错就分类收藏。但非得在移动硬盘上才能找出文献的情况,我目前还没碰到,可是这也不代表我收藏的东西就没有价值。其实,相比于小品散文类的东西,文献类读起来太吃力了,趣味性也不强,所以我能不读时就不读。读的少,就自然不会依赖移动银盘来储存文献。
回到刚才的例子,我收藏了很多托福备考资料,和我最后的托福考分有正相关吗?我看应该没有。用学习方法举个例子,有的作者强烈建议做托福阅读要先略读全文,有的帖子指出来说,谁读全文谁是傻子,我听谁?最终还不是得自己找一套适合自己的方法加以训练。在这个问题上,了解的方法多,不代表谁就有优势,真正的优势体现在平时的训练上。如果我当时不花很多的精力去读别人的经验,去收藏别人写的帖子,我就有更多的时间练习托福习题,这个结果不会比前者差。读别人的所谓方法,无非是种心理安慰,和中年妇女求神拜佛一个道理,自己对自己的训练,才是真枪实弹的操练。对于这种情形,我还是想引用叔本华广为人知的经验:杜绝让自己的大脑成为别人思想的跑马场。有切身体会的经验和想法,才是能加以利用,并提升自己水平的可靠手段。但这不代表收藏电子资源有什么毛病,问题可能出在工具上:电脑。
慢慢地,我体会到我不仅仅在托福考试的准备阶段有这个毛病,在做毕业论文的过程中,也有这个毛病:总想知道别人是怎么做的,想看别人的经验之谈,自己倒不动手干了,真是很致命。打开电脑就习惯性地先上上各大论坛和Google Reader,然后下载,收藏,忙得不亦乐乎。中研院院士王�森是台湾著名历史学家,他在给研究生的经验中说,"因为受计算机的影响,我发现很多学生写文章的能力都大幅下降",这真是一剑双刃的最好注脚。研读文献的时间多了,自我训练的时间却少了;习惯在论坛上争论不休,口出狂言,却忘了平日里应该多练练汉英语的口才文笔。电脑给我们带来希望,也带来威胁。
几年前,我彻底地和自己谈了一次,我使用电脑,提高学习效率了吗?如何使用电脑,对我的学习是不是关键性的?我犹豫不决,只能列了很多比较条目,看看各自的优缺点到底如何。我最终发现,我使用电脑并没有提高学习效率;如果没有电脑,我可以用更传统的方式找文献,收藏整理资料,而这对我的学习效果是没有任何影响的。电脑带来的问题不是说我下载的东西没有意义,不好,不是的,这些东西都很好,有的还是别人好心好意拿出来分享的"秘籍";真正的问题在于,太容易分心。比方说,写文章时好友msn上说几句,就可以一小时一小时地聊;休息时点开sina一看,各种八卦消息,比学术信息有趣多了,而手上要干的事情忘得差不多了。那电脑的好处在哪里呢?在于资源变得更容易获得,我听过一个七十年代读博士的教授,说起他们那会是怎么在图书馆查找文献的,非常辛苦的。如果取长补短,就能让个人电脑在研究中发挥作用,让学习变得更便捷。由于资源的容易获得,随之而来的另一个问题就是资料的过度收藏了,也就是网友说的,"几百几千个收藏"。通过这次思考,我认为电脑可以给学习带来很多方便;但如果电脑没有给我带来效率,我可以掐断网路连接,少check email或者看娱乐新闻(现在新闻都是娱乐性的)。
但真的有必要收藏很多免费网路资源吗?如果不是出于喜欢收藏的天性,我看也没必要。过渡沉迷于收藏网路资源,至少不算理性的选择。看到很多跟贴里面提到这个问题,也有人提出要"痛改前非",我看"罪恶感"倒不必这么重。因为分门别类地收藏资料,本身是个好习惯,没人规定收藏的人必须去读这些资料,要不然管采购的图书馆员意见可大了。选择性地不阅读,也不是个坏事,跟研究学习不相干的,当然可以随心所欲点,没必要逼迫自己非看下去不可。我猜很多人有逛论坛的习惯,经常会看到很吸引人的标题,"不可不读""不看后悔一辈子""五分钟保证学会""XX院士教导学子好好学习天天向上""美国大教授生前最后一课""北大学生生存秘籍""三分钟教你申请美国名校",等等。像卖街上老鼠药一样,拿个大喇嘛使劲喊,买的人也很多,但老鼠药可以做到药效很强的,而这种"不看后悔一辈子"的东西不见得非得去看去收藏,不过花时间买心安。
一个经典的例子,我看到一个论坛上说,"数学理论是创新的前提,我这儿打包了700本数学书,大家随便下",我一个头两个大,别说700本,就是70本也绝对够普通科学工作者看一辈子了。这时候,应该坦然承认自己不是神,因为一目十行也不够用啊,也就没必要去点击下载收藏。如果收藏的很多是这种类型的网路资源,不如大方点仍了,别说没机会看,看了也不会长进,更没必要"痛改前非"。
总结下,爱好收藏电子资源是个好习惯,如果收藏的时候就做好分类和索引的话。有选择性的阅读也是个好习惯,术业有专攻,关注好自己做的领域已经很难了。不要为 "只收藏不阅读"的习惯感到惭愧,爱好收藏的人不是用功的力度不够,而是用功的角度有偏差。同时也不要把问题局限在感情层面上。真正关键的问题在,如何选择自己必须要看的资料,有效得阅读和做摘记。问问自己,给自己最大的独立性时,我要干的是什么事,然后带着目的去阅读,杜绝三天打鱼两天晒网。记住一句谚语:最可怕的敌人是一步也不放松的敌人。下面我从资料的查找和选择,如何带着目的阅读,如何读文献,和坚持四个角度,和同学们分享我的经验。
真正关键的问题在,如何选择自己必须要看的资料,有效得阅读和做摘记。问问自己,给自己最大的独立性时,我要干的是什么事,然后带着目的去阅读,杜绝三天打鱼两天晒网。记住一句谚语:最可怕的敌人是一步也不放松的敌人。下面我从资料的查找和选择,如何带着目的阅读,如何读文献,和坚持四个角度,和同学们分享我的经验。"只收藏不阅读"这个习惯,前文已经把它从情感层面上升到了理性选择的层面,那接下来一些可操作性的措施都是我十多年网路阅读经验的总结,希望有心人能从中得到启发,发展一套自己的阅读习惯,我向你保证,这个过程是"磨刀不误砍柴工"。
1、
资料取舍
电子资源,一个指普通论坛,专业网站,娱乐网站等有价值的资源,我通常称为生活资源;也有可能指跟专业密切相关的期刊论文,我通常叫文献资源。
资料取舍部分,我只谈生活资源的取舍问题。因为对大多数人来说,生活资源比文献资源有吸引力,更有趣,阅读起来也轻松,是工作压力的调剂,结果就更容易在这个方面碰到困难。这也是为什么很多人在网路上沉迷在生活资源中不能提升的一个重要原因,这意味着一旦工作压力加大,读者会更倾向于通过阅读网路资源释放压力,而没有完成的工作又反过来加大了工作压力,形成恶性循环。
我也曾经碰到这个问题,五年前Youtube刚出来,我沉迷于上面的娱乐视频,前面两个月几乎每天要看一两个小时。有一天睡觉前我仔细想了想,Youtube出来之前,我那些时间是用来干什么呢?sina出来之前,我那些时间是用来干什么呢?msn出来之前,我那些时间又是用来干什么呢?一连三问,让我很快明白这些网站其实和我的工作,生活没有任何的关系,我把时间花在上面是没有任何成效的,说好听了是浪费时间,往难听了说,属于慢性自杀。但我也不能不娱乐。
于是我制定了一套"数字约束法",这套方法的前提就是前面的思考:这些网站没有在工作上带给我成效,但让我得到适当放松;读一个帖子可能会是收获,但不会因为没去读哪个帖子,我的生活就要遭受损失。"数字约束法"说白了很简单:因为经常去两三个我有会员身份的论坛,就规定自己每天只看三个论坛帖子,看三段Youtube。如果帖子多看一个,这样惩罚自己:往上面发一个有用的主题贴。Youtube也一样,多看一个,自己要往上面传一段。人都有惰性,要发有用的主题帖,或者传一段视频,相比较读帖子和看视频而言,趣味性显然都低一点。为了避免不被惩罚,我只能尽量严格地遵守规定。而且也带给我一个好处:由于每天只能读五个帖子,在我看的帖子里,我对话题都是非常熟悉和做了一定分析思考的,这样,放松的同时,知识面和思考能力也得到提高,一举两得。"数字约束法"我已经用了五年时间,现在已经成了一个上网习惯。如果觉得三这个数字不符合自己的现实,可以在二到五里面自由选取,但不能再往大了选。
2、
阅读的目的性
两个女人在街上走,一个是去菜市场的路上,她目的明确,想好了要买什么菜,买回来之后怎么做,完了等老公孩子回家吃饭。另一个少女却没有目的性,她看到街上的帅小伙真不少,街景也漂亮,彩灯挂起来了,壁橱里新衣服亮出来了,下午出来走到五点钟光景,回家吃晚饭已经来不及了,那就肯德基随便吃点爱尔兰烤鸡翅,晚上霓虹灯广告牌亮了,比白天还有趣呢,那当然得接着逛。她一天的时间也就这样过去了。
这两个女人的例子是拿来比喻阅读的目的性问题。如果我们带着目的,做起事情来就高效,不觉得枯燥乏味,用很酷的英文说,就是处于flow state。相反,例子里的少女终究有天会悔悟,年少时应该少逛点街,多花点时间想清楚自己到底要干什么,"谁怜越女颜如玉,贫贱江头自浣纱"。
所以说,目的性也是要花时间去思考,不是凭空就有的,更多的情况是,有那么一点点目的性,但不够明确;或许有那么一两点,但没有三四点。于是问题马上就和职业定位和自我期待等等"大问题"联系在一起了,因为人心里没有目标没有期望的时候,总会觉得日子过得多么便宜舒适,没有代价,也就没有目的性。这是个大问题了,其落脚点又在哪呢?处理小问题比处理大问题要简单,我采用"关键词法"来克服这个困惑。具体做法是,一天列三个目标(必须和你的大目标和人生规划有关),写成简短的关键词,它们清晰地规范了我这天要完成的主要任务;同时,每天列两个关键词,作为上网找资料和读文献的中心词语。
提到的两类关键词,用不同的颜色分别写在摘要片上(我喜欢黑色和蓝色两种),标注好日期;日子长了就有一叠关键词,月末的时候有精力,可以用两张A4白纸分别抄录关键词,这里面就很清晰地看到这个月里注意力是如何转移的,是不是偏离了职业规划或者手头的课题。我往往懒得重新再抄一遍,拿出摘要卡过一遍也大致可以看到这个月里主要做成了什么事情。显然,这些做法又是针对电脑上的注意力分散问题设计的,好处在克服了 "注意力分散"的情绪,让我始终记得当下紧要的还有什么事情,目的性明确,也就不那么容易分心了。
3、
读文献
这里只谈理工科的文献阅读过程,因为和其他学科有很大不同,方法上必然是有局限性。我读的文献主要是三类:两本专业期刊上的文献,用前面提到的关键词法搜索的论文,和团队推荐的论文。阅读方法也是三种:略读摘要,通读全文,精读。注意这么一个问题,就是所有的文献都有略读过程,而所有精读的文章,都经过前面的略读和通读的。然后呢,就是三种阅读方法在三类文献来源上的应用比例有所不同:专业期刊上,三种方法的应用数量是10:2:0.5;搜索文献上,大致是10:5:1;团队的推荐文献是10:10:10。
这三种阅读方法应该是大家都在用的,每个人在应用效果上可能还有所不同。本质上,三种方法无所谓好坏,都是必须掌握的方法。我不可能所有的文章都去精读,也不会把重要文献拿过来略读,这些都是不合适的。根据我自己的经验以及跟学生交流的经验,大家在通读和精读这两个方法上还是会碰到些问题,我先谈谈精读。技术上讲,精读的过程要把文章的每一个词语都搞清楚,把文章的整体思路也要搞清楚。那这会不会导致阅读压力,导致重新产生"只收藏不阅读"的习惯呢?不会的,因为值得精读的文章其实不多。当发现一篇和自己的研究目标相关的文章,研究方法相关的文章,有多学科交叉应用技术的潜在可能的文章时,或者写得特别吸引人的好文献,经过权衡,我才决定是否采用精读,这决定了精读的文章的比例是很小的,其绝对量也是非常少的。精读的文章必须打印下来,便于手写做摘要和笔记。
而通读处于精读和略读之前,其文献量大,其相关性却一般,因此也是挑战性的。我用"slides摘录法"来克服这个问题。先给slides起个标题,由里面内容的关键词决定,再附加一个做笔记的起始时间,比如,"超临界反应应用实例01/01/2010-06/01/2010"。然后选择需要通读的文章来。我自己是个视觉型的读者,所以对文章里的支持性的图表,目录等视觉效果比较敏感,我用pdf reader附带的照相功能截图下来,粘贴到slide上面,然后在记录栏里写好标题,作者,和图表内容;碰到有启发性的语句,我用高亮功能(荧光笔)划上,然后再截图复制到slide;然后,自己的想法也可以往里面添加。这样,阅读和整理的过程同步完成,非常高效,也便于将来retrieve。半年下来,slides大约达到三百页,你就可以给整理下slides,写个outline。我这里强力推荐,采用这种方法来缓解"文献数量"和"阅读要求"之间的矛盾。
4、
坚持
美国的政治家科学家本杰明-富兰克林曾经说过,教导别人如何磨刀的人,他自己的刀不见得锋利。这就是说,明白这些方法却不动手去做,是导致我们人生挫败的主要因素。在这个意义上说,我提到的这些方法仍然是徒劳,仍然是不值一文。在习惯的培养中,如果"坚持"这个要素缺失了,坦白地讲,说得再多再精彩,听得再多,读得再多,也都是徒劳无功,不过一种行为艺术而已。"行到水穷处,坐看云起时",用这句话和大家共勉,努力攀登人生新的高峰。也把"坚持"这个问题留给读者,看看你有无好方法可以把这些说法变成习惯,然后来和网友们分享你的过程。
浅谈生物信息的职业发展规划 (转载)
发信站: BBS 未名空间站 (Mon Dec 20 15:31:00 2010, 美东)
【 以下文字转载自 Biology 讨论区 】
发信人: celler (celler), 信区: Biology
标 题: 浅谈生物信息的职业发展规划
发信站: BBS 未名空间站 (Sun Dec 19 14:37:27 2010, 美东)
这里生物信息泛指生物信息学+计算生物学,本文仅是职业技能上的浅谈,希望能够抛砖引玉~~
我觉得职业发展应该是广、深必备。
广:熟练各种编程语言,能够处理各种数据,同时学习相关生物知识;
深:在某一生物研究方向深入,熟悉从实验到数据及结论的各项环节。
广而不深的后果是没有确定的研究方向,总是给别人作工具;
深而不广的后果是在当今数据爆炸的时代发展机会少。
难点有以下几点,难度依次增加:
1. 各种类型编程语言的熟练使用:并不是指掌握所有语言,而是根据数据对象选择那
么几种有代表性的语言。理论上C/C++可做任何事情,但会用R/Matlab/Perl等会在一些
场合更高效一些。
2. 学习各种生物知识:一方面是书本知识,其主要功夫是在业余时间的利用上;另一
方面是实践知识,来自于生物实验室,交流为主。
3. 同时还得学习相关数学知识:这绝对是个难点,会编程不等于懂数学。
4. 某一个方面深入。这里说的方向必须是生物研究的方向,而不是生物信息的方向。
我觉得以上几点都达到的话,从读博士起大概需要5-10年时间。
生物信息全才=生物+统计+建模+数据库+软件。
(建模指动力学上的,不是指统计建模)
周老师话人生(十二)──培养习惯的“四步魔法”(上)
各位开复网的年轻朋友:
你们好!
一周一次,我们在这里见面,我似乎已成习惯,希望你们也成习惯,就像一周听一次你喜欢的选修课,也像一周去一次教堂。其实细想起来,千百年来宗教之所以能长盛不衰,它在许多地方就智慧地借用了习惯的力量──你看,天天念经,不就是一种习惯?天天祈祷,不就是一种习惯?每周做一次礼拜,不就是一种习惯?每年到沙特进行一次朝圣,不也是一种习惯?!
那围绕"习惯"两字,这周我要和你们探讨什么主题呢?
这周我要与你们探讨你们最感兴趣的问题──
如何培养习惯?
因为从某从意义讲,我以前所说的一切,都是为了让你们从内心深处明白习惯对我们人生之重要,从而使你们产生强烈的要培养自己各种好习惯、克服自己各种坏习惯的欲望。而有了这种强烈欲望后,下一个问题,当然就是如何去实施了。
说到这儿,使我不禁想到许多朋友在网上的感慨。这种感慨千言万语汇成一句话──
习惯确实重要,但就是培养起来太难了。
是的,一个"难"字,几乎挡住了我们绝大部分人的脚步;也真因为此,习惯几乎成了少数人的专利。
但培养好习惯、克服坏习惯,真有那么难吗?
不,完全不是!
我想,当你读完了我以下两周的《培养习惯的'四步魔法'》后,你一定会和我一样,产生这种感觉。
下面请允许我给你介绍这"四步魔法"。
这"四步魔法"是我在借鉴了无数先人的智慧、又在自己大量实践的基础上总结出来的,因此我确信它的价值。我深信,如若你能依照它的指引,一步步操作,那培养各种好习惯、征服各种坏习惯对你而言,一定是十拿九稳、易如反掌的事。
那这"四步魔法"究竟是哪四步呢?
第一步:必要性分析。即对该习惯培养的必要性,必须作认真分析。
第二步:可性行研究。即对该习惯养成的可行性,必须作认真研究。
第三步:策略性探讨。即对该习惯培养的策略,必须作认真探。
第四步:操作性工具。即为了培养该习惯,还必须找到一种既简单、又高效的操作工具。
下面容我一一为你阐述。
第一步──必要性分析
所谓"必要性分析",顾名思议,是指培养这个习惯对你是否必要;如果没必要,培养它当然毫无意义;但如果有必要,而且必要性极大,那我们当然就会下大功夫。
必要性实际也就是重要性,它帮我们解决一个动力问题。因为做任何事都需要有动力, 而这动力当然就来自这件事对我们的重要程度。
明白了这一点,对我们具有很大的指导意义:
首先,当我们要培养一个好习惯或征服一个坏习惯时,必须仔细研讨其必要性,千方别仓促上马。为此你可以为其列出许多条条来:比如这习惯一旦养成,对自己有多大益处;如果养不成,对自己有多大坏处。这种条条越多,你会感到越重要,实施起来劲头也就会越大。
其次,你要培养什么好习惯、征服什么坏习惯,可从你的理想、抱负中提取;因为理想、抱负对我们人生无异是再重要不过的事。同时,你也可以从困扰你的难题、阻碍你的瓶颈、你必须达成的目标、你极待提升的短板中去提取;因为这类事你内心迫切想解决,因此一旦你从中提取出某种习惯或"习惯配方",你实施起来劲头就会特别大。这正如一位原本"回头率"极高的漂亮姑娘,又正在人生的那种关键时期,可这一阵身体突然发胖,以至使她往日的丰采和魅力大减。试想,在这样的时候,如果她得到了一组可以征服她肥胖的"习惯配方",那她行动起来的劲头一定是超乎寻常的。因为对于她而言,这实在是太重要、太重要了──即必要性太大了。
以上是这"四步魔法"的第一步──必要性分析。
第二步──可行性研究
可行性研究,显然是指当我们仔细分析了培养这个习惯的必要性后,还要对其可行性作认真研究。
为什么?
因为有了必要性以后,能否可行还是个大问题。
比如非典后,人们都深感健康的重要,于是有母亲就下决心,一定要带儿子养成天天清晨五点起来跑步的习惯。
你可分析一下,这习惯的可行性究竟如何?
这显然有问题。因为你这样做,一天是可以的,一个星期也可以;但一个月呢?一年呢?长此以往呢?显然就不可行了。
再比如有同学认为外语对自己实在是太重要了,于是心一横,发誓要养成每天记100个单词的习惯,这样,一天一百个,十天一千个,一百天一万个,这多带劲啊!
但这样做能长久吗?显然有问题。
为什么?
因为单词是要不断复习才能真正记住的。因此开始几天你也许还可以,但越到后来,这种复习量就会越大,以至大到最后你根本就无法应对。到那时,这习惯就只能中途夭折了。
再比如我们以前提到开复老师为增进人际关系,每星期请一个有影响力的人吃饭的习惯。于是有同学听了也兴致勃勃准备养成这一习惯。但你有没有想到,你的状况与开复老师是完全不一样的。单就经济而言,人家每月是多少收入,而你又有多少呢?
再比如宠物随地大小便是京城一个十分让人头疼的问题,于是报上登出文章,说有人发明了一种宠物公厕,只要让宠物养成到这些公厕方便的习惯,这难题就能迎刃而解。
但你只要稍加分析就可以对其可行性进行质疑:让人养成往指定器具吐痰、扔垃圾的习惯尚且难而又难,那让宠物要养成这种习惯,岂不比登天还难……
朋友,以上就是我所谈的"可行性研究",也就是必要性有了以后,还要对其可行性作极认真的分析。因为很显然,假如这习惯既必要、又可行,那我们实施起来就会节节胜利,劲头会越来越大,情绪也会越来越高涨;相反,如果虽有必要,却不可行,那总有一天,问题会暴露出来,使你不得不忍痛割爱,最终放弃;而到那时,你在失败之余,自信心岂不也会大受挫伤?
因此对于可行性研究这一步,望你一定要走,可千万别省略了。
第三步──策略性探讨
培养习惯"四步法魔"必经的第三步,便是策略性探讨。
所谓"策略性探讨",是指当必要性和可行性都充分以后,真正实施起来,我们还必须讲究策略性。否则,这习惯照样难以养成。
对此容我举一实例,你就很容易理解。
在我一次课上,有位来自沃尔沃的年轻女主管向我提问:
"周老师,我家住16楼,我很想养成一个习惯,每天上下楼不乘电梯,这样对我减肥、健身肯定很有好处。但为什么我试了几天,就不成了?"
我觉得这个问题很典型,我们不妨一起来分析。
试想,为了减肥、健身,天天爬16层高楼,那毕竟是一件极艰苦的事:开始她一定是咬着牙、喘着气、努着劲,才一步步艰难地把腿挪到那16层的;而随后几天,她一定会天天累得浑身酸痛,以至酸痛得她全身骨头架子都要像散了似的;而再以后,她心里每天一定都在激烈地斗争,以至终有一天,她感到实在无法坚持了,于是就只能中途放弃,并无可奈何地抚慰自己道:"胖一点就胖一点嘛,这算什么,还丰满呢?你看人家香港肥姐,活得多潇洒、多滋润啊!"
……
朋友,这也许就是这位女士败下阵来的真实过程,也一定是我们许多人曾败下阵来的真实过程。
那采用我所谓的"策略性"又应如何去做呢?
应该这样去做。
你想,你一下子要爬这16层高楼当然难度极大。那怎么办呢?你先别急,别总想一口吃成个胖子、一口吞下个热汤圆。你慢慢来──开始几天,剩电梯到十三四层,爬二三层;爬二三层对你一定很轻松,没什么问题吧?好了,过些天再加一层;这加一层对你一定也没什么问题吧?好了,过些天再加一层……朋友,你只要听我的话,不急不慢、循序渐进,一天天脚踏实地、步步为营、稳扎稳打地加,我相信终有一天,你会在不知不觉中每天爬十六层楼还会感到轻松自如、兴致勃勃、精神抖擞、豪情满怀,仿佛珠穆朗玛峰也天天踩在你脚下似的……
朋友,我为什么敢说这样的话?因为我许多现在你们看似不可思议的习惯,其实就是这样一点点养成的。
那我以上所举的这个实例说明了什么呢?
说明了培养一种习惯,除了要研讨它的必要性和可行性外,还必须探讨它的策略性。
而经过我的深入思考和实践,我认为这策略性关键在两个字──
"少"和"小"
所谓"少",就是从总体战略而言,每个阶段培养的习惯,要讲究一个"少"字,千万不能"多";
所谓"小",就是从具体战术而言,每个习惯开始培养时,要讲究一个"小"字,千万不能"大"。
因为这两个字太重要了,因此让我来分别细说。
先说这"少"字。
我们培养习惯,为什么总体战略上,每个阶段要讲究一个"少"字呢?
这就要先从我们培养习惯的总体战略说起。
实际从我以前的大量论述中,你们一定能知道,我之所以如此强调"习惯"、如此重视"习惯",因为"习惯"决不是简单两个字、也决不是某项单一的素质,而是一条路,是一条您一辈子应坚持去走的自我超越、自我突破、自我修炼之路。我们前面还提到,我们这里所谈的习惯,决不是一种狭义习惯,而是一种"广义习惯"。
既然是一条一辈子要走的路、又是一种"广义习惯",那我们这一生要培养的习惯从小到大、从里到外、从头到脚、从学业到事业、从动作到思维、从思维到精神,是不是太多了、太多了?!
那如此多的习惯要去培养,我们如何应对呢?
显然每阶段要讲究一个"少"字。
不讲究一个"少"字,一大堆习惯都想培养和征服,到头来就会成狗熊掰棒子,一个也拿不到手。
而讲究了一个"少"字,就等于集中兵力打歼灭战,就等于用铁郎头,去砸一个小钉子,就很容易成功。
而一旦你成功了,兴趣有了,劲头大了,信心也足了,于是就会接二连三,势如破竹,开始了极好的良性循环;否则,岂不会产生可怕的恶性循环?
因此知道了这个道理,我们每个阶段培养的习惯一定要"少";尤其开头,一二个、二三个足矣。
以上我们讲的是"少"。
下面再讲这"小"。
这可是我的一个重大发现,其对成功培养一个习惯的作用,可以说妙不可言。
我为什么这样说呢?
我们还是以前面举的爬16楼的故事为例。
你看那学员为何十六层没爬几天就败下阵来了呢?问题显然在一个"大"字──你想,从来都是乘电梯的人,猛不丁天天要爬十六层高楼,这数字多"大"啊,简直大得吓人!
但如果我们把这"大"变 成"小",把每天十六层变成这习惯起步时每天先只爬二三层,这问题岂不一下就迎刃而解了?
这实际是一种智慧,而且还是大智慧。因为老子《道德经》中就有这样一句闪烁着智慧光芒的话:
天下难事,必作于易;天下大事,必作于细。
而实际细想起来,天下许多难事、许多大事,一件件不都是从易处、从细处着手的吗?而有了一个"小"字,不就一下子变得"易"了、变得"细"了吗?
因此,通晓了这种智慧,我们在习惯上也一定要这样做。而从某种意义讲,习惯的培养和改变,其本质是要根本去改变一个人,这几乎是我们人生最难的事!试想,我们学习读书尚且要从一加一开始,从加、减、乘、除开始,那我们培养习惯,就更应顺序渐进,从一个"小"字开始!
我们说起步时要讲究一个"小"字,另一个缘由是,由于采用了这一策略,我们在习惯培养上最难过的两道坎,就给您一下子轻易迈过了。
第一道坎是"起步"坎。
我们还是以爬楼为例吧。你从小乘惯了电梯,现在要爬十六层,而且以后天天要爬这十六层,你当然就很难下决心起步培养这习惯。
而现在情况完全不一样了,我们的目标虽然是爬十六层,但开始只要二三层而己,这有什么难的?我今天就起步,甚至我此刻就起步!!
因此你看,起步时讲究一个"小"字,这第一个坎就很轻松地给我们迈过了。而万事开头难,这第一步迈出去了,就等于成功了一半。
这起步时讲究一个"小"字,还能帮我们轻松迈过习惯培养的第二道坎──"前三五天"坎。
对此我们还以刚才的情况为例。
试想,倘若我们下决心起步了这习惯,那一开始这强度有多"大"、对于你的变化又有多"大"啊!而由于强度过"大"、变化过"大",因此旧习惯的反抗也必然"大",旧势力的反扑也必然"大",你浑身上下的不适应、不舒服也必然"大",而"大"到一定程度,你实在顶不住了,当然就只能败下阵来了。
这也就是我们培养习惯往往难过的"前三五天"坎。
但现在起步时讲究一个"小"字呢,这"前三五天"坎岂不一下子又给我们迈过了?──你想,开始几天才爬二三层,而以后也是一点点加上去的,那你会遇到多少反抗、又会有多少不适应、不舒服呢?
朋友,说到此,我忽然想起最近我们清华老同学聚会。我们大家都到过世界许多地方,结果发现,现在不管世界上什么国家,都公认我们这近三十年的改革是极为成功的。那成功的原因何在呢?当然很多。但其中有一条很重要,我们采用的是渐进的策略。这策略用我们前政协主席李瑞环的话说,是:"迈小步,不停步"。您看,这"迈小步,不停步"讲的,不也是一个"小"字吗?
因此,国家的改革是这样,我们自己综合素质的提升也应是这样,要"迈小步,不停步",要"循序渐进",要讲究每阶段的一个"少"字和起步时的一个"小"字。而由这"少" "小"两字开始,我们一个个好习惯就能逐步养成,一个个坏习惯就能逐步克服,于是我们就走上了一条不断自我超越、自我突破、自我修炼的康庄大道。试想,走上了这样一条康庄大道,年轻的朋友,你这一生还何愁学业?何愁能力?何愁财富?何愁健康?何愁快快?何愁幸福?!
以上,就是我要给你们讲的培养习惯"四步魔"中的第三步──"策略性探探",其关键在"少""小"两字。这两字用好了,培养好习惯、征服坏习惯,就会变得如囊中取物,你们说对吗?
执行力
那我们人性还有一大普遍的弱点是什么呢?
是──
“行而不恒!”
那何谓“行而不恒!”呢?
所谓“行而不恒”,是指当你知道了一种好的东西后,你行动了没有?行动了;但坚持了没有,没有!你想,你没有坚持,你只是“三分钟热度”、只是“开头热了二三天”、你只是“三天打鱼,二天晒网”──这是我们人性中最普遍的现象──那你各种目标、各种难题、各种瓶颈、各种“短板”你怎么能实现、怎么能解决、怎么能突破、怎么能提升呢?因为所有这一切都需要持之以恒、都需要假以时日、都需要锲而不舍、都需要有一个从量变到质变的过程才能逐步得以实现的。而现在你是“行而不恒”,那所有这一切你怎么能达成、怎么能实现呢?
朋友,关于“恒”的这种重要性我们在前面是不是讲得太多、太多了,恐怕你耳朵已磨出了老茧。那我为何要如此一而再、再而三地、不厌其繁地予以强调呢?因为这一点对我们人生的方方面面实在太重要了,尤其对我们听得越来越多的“执行力”三个字。
那何谓“执行力”呢?
所谓“执行力”就是你完成任务的能力、达成目标的能力、解决难题的能力;一句话,是你要什么,就能达成什么的能力!试想,倘若你要什么、达不成什么,那还侈谈什么“执行力”呢?当然,我们这里说的“要”,一定是指善的种种、而非恶的种种。
而想一想吧,如果我们人性的特质是普遍的“行而不恒”,那无论个人、企业、政府怎么能拥有对我们如此重要的“执行力”呢?!
……
朋友,以上我谈的,就是我们人性的二大普遍弱点──“知而不行”和“行而不恒”!由于这二大弱点,我们的“行动力”和“执行力”普遍低下。
但朋友,我在此要异常兴奋地告诉你,一旦你明了了习惯的价值,一旦你真的下决心在习惯上下大功夫,你就会惊奇地发现,你的人生仿佛发生了质的变化,你会从一个“知而不行”“行而不恒”的人变为一个“知而必行、行而必恒、恒而必达”的人,你将拥有超强的行动力和执行力,你的人生目标、人生难题、人生瓶颈、人生“短板”就很容易达成、解决、突破、提升!
A letter from a student
Hello HW,
I just want to thank you for being such a great GSI. I indeed learned a
lot from going to your discussion. You clarify a lot of my uncertainty
with the concepts and materials we learned throughout the course. I
honestly wouldn't know how I would do if it weren't for your help. Happy
holidays and take care.
Best,
Anna
New findings raise questions about reliability of fMRI as gauge of neural activity
New findings raise questions about reliability of fMRI as gauge of
neural activity
By Laura Sanders
December 19th, 2009; Vol.176 #13 (p. 16)
The 18-inch-long Atlantic salmon lay perfectly still for its brain
scan. Emotional pictures —a triumphant young girl just out of a
somersault, a distressed waiter who had just dropped a plate — flashed
in front of the fish as a scientist read the standard instruction
script aloud. The hulking machine clunked and whirred, capturing
minute changes in the salmon's brain as it assessed the images.
Millions of data points capturing the fluctuations in brain activity
streamed into a powerful computer, which performed herculean number
crunching, sorting out which data to pay attention to and which to
ignore.
By the end of the experiment, neuroscientist Craig Bennett and his
colleagues at Dartmouth College could clearly discern in the scan of
the salmon's brain a beautiful, red-hot area of activity that lit up
during emotional scenes.
An Atlantic salmon that responded to human emotions would have been an
astounding discovery, guaranteeing publication in a top-tier journal
and a life of scientific glory for the researchers. Except for one
thing. The fish was dead.
The scanning technique used on the salmon — called functional magnetic
resonance imaging — allows scientists to view the innards of a working
brain, presumably reading the ebbs and flows of activity that underlie
almost everything the brain does. Over the last two decades, fMRI has
transformed neuroscience, enabling experiments that researchers once
could only dream of. With fMRI, scientists claim to have found the
brain regions responsible for musical ability, schadenfreude,
Coca-Cola or Pepsi preference, fairness and even tennis skill, among
many other highly publicized conclusions.
But many scientists say that serious issues have been neglected during
fMRI's meteoric rise in popularity. Drawing conclusions from an fMRI
experiment requires complex analyses relying on chains of assumptions.
When subjected to critical scrutiny, inferences from such analyses and
many of the assumptions don't always hold true. Consequently, some
experts allege, many results claimed from fMRI studies are simply dead
wrong.
"It's a dirty little secret in our field that many of the published
findings are unlikely to replicate," says neuro scientist Nancy
Kanwisher of MIT.
A reanalysis of the salmon's post mortem brain, using a statistical
check to prevent random results from accidentally seeming significant,
showed no red-hot regions at all, Bennett, now at the University of
California, Santa Barbara, and colleagues report in a paper submitted
to Human Brain Mapping. In other words, the whole brain was as cold as
a dead fish.
Less dramatic studies have also called attention to flawed statistical
methods in fMRI studies. Some such methods, in fact, practically
guarantee that researchers will seem to find exactly what they're
looking for in the tangle of fMRI data. Other new research raises
questions about one of the most basic assumptions of fMRI — that blood
flow is a sign of increased neural activity. At least in some
situations, the link between blood flow and nerve action appears to be
absent. Still other papers point out insufficient attention to
insidious pitfalls in interpreting the complex enigmatic relationship
between an active brain region and an emotion or task.
Make no mistake: fMRI is a powerful tool allowing neuroscientists to
elucidate some of the brain's deepest secrets. It "provides you a
different window into how mental processes work in the brain that we
wouldn't have had without it," says Russell Poldrack of the University
of Texas at Austin.
But like any powerful tool, fMRI must be used with caution. "All
methods have shortcomings — conclusions they support and conclusions
they don't support," Kanwisher says. "Neuroimaging is no exception."
BOLD assumptions
fMRI machines use powerful magnets, radio transmitters and detectors
to peer into the brain. First, strong magnets align protons in the
body with a magnetic field. Next, a radio pulse knocks protons out of
that alignment. A detector then measures how long it takes for the
protons to recover and emit telltale amounts of energy. Such energy
signatures act as beacons, revealing the locations of protons
ensconced in specific molecules.
fMRI is designed to tell researchers which brain regions are active —
the areas where nerve cells are abuzz with electrical signals.
Scientists have known for a long time how to record these electrical
communiqués with electrodes, which can sit on the scalp or be
implanted in brain tissue. Yet electrodes outside the skull can't
precisely pinpoint active regions deep within the brain, and
implanting electrodes in the brain comes with risks. fMRI, on the
other hand, offers a nonintrusive way to measure neuron activity,
requiring nothing more of the subject than an ability to lie in a big
tube for a while.
But fMRI doesn't actually measure electrical signals. Instead, the
most common fMRI method, BOLD (for blood oxygen level–dependent),
relies on tiny changes in oxygenated blood as a proxy for brain
activity. The assumption is that when neurons are working hard, they
need more energy, brought to them by fresh, oxygen-rich blood. Protons
in oxygen-laden hemoglobin molecules, whisked along in blood, respond
to magnetic fields differently than protons in oxygen-depleted blood.
Detecting these different signatures allows researchers to follow the
oxygenated blood to track brain activity — presumably.
"There's still some mystery," Bennett says. "There are still some
things we don't understand about the coupling between neural activity
and the BOLD signal that we're measuring in fMRI."
Researchers use BOLD because it's the best approximation to neural
activity that fMRI offers. And for the most part, it works. But a
study published in January in Nature reported that the link between
blood flow and neural activity is not always so clear. In their
experiments, Aniruddha Das and Yevgeniy Sirotin, both of Columbia
University, found that in monkeys some blood changes in the brain had
nothing to do with localized neuron firing.
Das and Sirotin used electrodes to measure neuronal activity at the
same time and place as blood flow in monkeys who were looking at an
appearing and disappearing dot. As expected, when vision neurons
detected the dot and fired, blood rushed into the scrutinized brain
region. But surprisingly, at times when the dot never appeared and the
neurons remained silent, the researchers also saw a dramatic change in
blood flow. This unprompted change in blood flow occurred when the
monkeys were anticipating the dot, the researchers found. The
imperfect correlations between blood flow and neural firing can
confound BOLD signals and muddle the resulting conclusions about brain
activity.
Mass action
Another fMRI difficulty arises from its view-from-the-top scale.
Predicting a single neuron's activity from fMRI is like trying to tell
which way an ant on the ground is crawling from the top of the
Washington Monument, without binoculars. The smallest single unit
measured by BOLD fMRI, called a voxel, is often a few millimeters on
each side, dwarfing the size of individual neurons. Each voxel — a
mashup of volume and pixel — holds around 5.5 million neurons,
calculates Nikos Logothetis of the Max Planck Institute for Biological
Cybernetics in Tübingen, Germany. Assuming that the millions of
neurons in a voxel perform identically is like assuming every single
ant on the National Mall crawls north at noon.
"fMRI is a measure of mass action," Logothetis says. "You almost have
to be a professional moron to think you're saying something profound
about the neural mechanisms. You're nowhere close to explaining what's
happening, but you have a nice framework, an excellent starting
point." BOLD signals could reflect many different events, he says. For
instance, some neurons send signals that stop other neurons from
firing, so increased activity of these dampening neurons could
actually lead to an overall decrease in neuron activity.
Kanwisher points out that words such as "activity" and "response,"
mainstays of fMRI paper titles, are intentionally vague. Pinning down
the details from such a zoomed-out view, she says, is impossible.
"What exactly are the neurons doing in there? Is one inhibiting the
other? Are there action potentials? Is there synaptic activity? Well,
we have no idea," she says. "It would be nice to know what the neurons
are doing, but we don't with this method. And that's life."
Inadvertent mischief
After BOLD signals have been measured and the patient has been
released from the machine, researchers must sort the red-hot voxels
from the dead fish. Statistics for dealing with these gigantic data
sets are so complex that some researchers outsource the analyses to
professional number crunchers. Choosing criteria to catch real and
informative brain changes, and guarding against spurious results, is
one of the most important parts of an fMRI experiment, and also one of
the most opaque.
"It's hellishly complicated, this data analysis," says Hal Pashler, a
psychologist at the University of California, San Diego. "And that
creates great opportunity for inadvertent mischief."
Making millions, often billions, of comparisons can skew the numbers
enough to make random fluctuations seem interesting, as with the dead
salmon. The point of the salmon study, Bennett says, was to point out
how easy it is to get bogus results without the appropriate checks.
Bennett and colleagues have written an editorial to appear in Social
Cognitive and Affective Neuroscience that argues for strong measures
to protect against false alarms. Another group takes the counterpoint
position, arguing that these protections shouldn't be so strong that
the real results are tossed too, like a significant baby with the
statistical bathwater.
One of the messiest aspects of fMRI analysis is choosing which part of
the brain to scrutinize. Some studies have dealt with this problem by
selecting defined anatomical regions in advance. Often, though,
researchers don't know where to focus, instead relying on statistics
to tell them which voxels in the entire brain are worth a closer look.
In a paper originally titled "Voodoo correlations in social
neuro science" in the May issue of Perspectives on Psychological
Science, Edward Vul of MIT, Pashler and colleagues called out 28 fMRI
papers (of 53 analyzed) for committing the statistical sin of
"nonindependence." In nonindependent analyses, the hypothesis in
question is not an innocent bystander, but in fact distorts the
experiment's outcome. In other words, the answer is influenced by how
the question is asked.
One version of this error occurs when researchers define interesting
voxels with one set of criteria — say, those that show a large change
when a person is scared — and then use those same voxels to test the
strength of the link between voxel and fear. Not surprisingly, the
correlation will be big. "If you have many voxels to choose from, and
you choose the largest ones, they'll be large," Vul says.
In a paper in the May Nature Neuro science, Nikolaus Kriegeskorte of
the Medical Research Council in Cambridge, England, and colleagues
call the non-independence issue the error that "beautifies" results.
"It tends to clean things up at the expense of a veritable
representation of the data," Kriegeskorte says.
Digging through the methods sections of fMRI papers published in 2008
in Nature, Science, Nature Neuroscience, Neuron and the Journal of
Neuroscience turned up some sort of nonindependence error in 42
percent, Kriegeskorte and colleagues report in their paper. Authors
"do very complicated analyses, and they don't realize that they're
actually walking in a very big circle, logically," Kriegeskorte says.
Kanwisher, who just cowrote a book chapter with Vul about the
nonindependence error, says that researchers can lean too heavily on
"fancy" math. "Statistics should support common sense," she says. "If
the math is so complicated that you don't understand it, do something
else."
The problem with blobology
An issue that particularly irks some researchers has little to do with
statistical confounders in fMRI, but rather with what the red-hot
blobs in the brain images actually mean. Just because a brain region
important for a particular feeling is active does not mean a person
must be feeling that feeling. It's like concluding that a crying baby
must be hungry. True, a hungry baby does cry, but a crying baby might
be tired, feverish, frightened or wet while still well-fed.
Likewise, studies have found that a brain structure called the insula
is active when a person is judging fairness. But if a scan shows the
insula to be active, the person is not necessarily contemplating
fairness; studies have found that the insula also responds to pain,
tastes, interoceptive awareness, speech and memory.
In most cases, the brain does not rely on straightforward
relationships, with a specific part of the brain responsible for one
and only one task, making these reverse inferences risky, Poldrack
points out.
"Researchers often assume that there are one-to-one relations between
brain areas and mental functions," he says. "But we don't actually
know if that is true, and there are many reasons to think that it's
not." Inferring complex human emotions from the activity of a single
brain region is not something that should be done casually, as it is
often is, he says.
Sometimes, reverse inference is warranted, though, as long as it is
done with care. "There's nothing wrong with saying there's a brain
region for x," Kanwisher says. "It just takes many years to establish
that. And like all other results, you establish it, and it can still
crash if somebody presents a new piece of data that argues against
it."
Marco Iacoboni of the University of California, Los Angeles and
colleagues drew heat from fellow neuroscientists for a New York Times
op-ed in November 2007 in which the team claimed to have ascertained
the emotional states of undecided voters as they were presented with
pictures of candidates. For instance, the researchers concluded that
activity in the anterior cingulate cortex meant that subjects were
"battling unacknowledged impulses to like Mrs. Clinton." Poldrack and
16 other neuroscientists quickly wrote their own editorial, saying
that the original article's claims had gone too far.
Iacoboni counters that reverse inference has a valuable place in
research, as long as readers realize that it is a probabilistic
measure. "A little bit of reverse inference, to me, is almost
necessary," he says.
Careful language and restrained conclusions may solve some of the
issues swirling around fMRI interpretations, but a more serious
challenge comes from fMRI's noise. Random fluctuations masquerading as
bona fide results are insidious, but the best way to flush them out is
simple: Do the experiment again and see if the results hold up. This
built-in reality check is time-consuming and expensive, Kanwisher
says, but it's the best line of defense against spurious results.
A paper published April 15 in NeuroImage clearly illustrates the
perils of one-off experiments. In an fMRI experiment, Bradley
Schlaggar of Washington University in St. Louis and colleagues found
differences in 13 brain regions between men and women during a
language task. To see how robust these results were, the researchers
scrambled the groups to create random mixes of men and women. Any
differences found between these mixed-up groups could be chalked up to
noise or unknown factors, the researchers reasoned. The team found 14
"significant" different regions between the scrambled groups,
undermining the original finding and rendering the experiment
uninterpretable.
"The upshot of the paper is really a cautionary one," Schlaggar says.
"It's easy and common to find some group differences at some
statistical threshold. So go ahead and do the study again."
In many ways, fMRI has earned its reputation as a powerful
neuroscience tool. In the laboratories of capable, thoughtful
researchers, the challenges, exceptions and assumptions that plague
fMRI can be overcome. Its promise to decode the human brain is real.
fMRI "is a great success story of modern science, and I think
historically it will definitely be viewed as that," Kriegeskorte says.
"Overwhelmingly it is a very, very positive thing."
But the singing of fMRI's praises ought to be accompanied by a chorus
of caveats. fMRI cannot read minds nor is it bogus neophrenology, as
Logothetis pointed out in Nature in 2008. Rather, fMRI's true
capabilities fall somewhere between those extremes. Ultimately,
understanding the limitations of neuro imaging, instead of ignoring
them, may propel scientists toward a deeper understanding of the
brain.